Image Inpainting via Generative Multi-column Convolutional Neural Networks
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Introduction Our Model

ID-M RF regularlzatmn

Target
» Estimating suitable pixel information to fill
holes In Images.

Metlvatlons

A typical inpainting method focuses on

» Features for generation: to consider features as a
group of different components and combine both
global semantics and local textures.

» Reliable similar patches: using neighboring
patches to regularize the generated ones.

 Spatial-variant constraints: pixels close to area
boundary are with few choices, while the central
part can be less constrained.

Our Model

Overall framework
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To take I\/IRF like regularlzatlon only I the
training phase. For neural patches v and s extracted
from Y; and Y* respectively, their relative

similarity is: RS(v, s) = exp( #(v.5) ), and

h X (rer;:f(li((ll) u(v,r)+e)

It 1S further normalized as:
RS(v, s)
Zrepyrty RSV, T)
The final ID-MRF loss:
Lorr = Ly (convd_2) + Yi; convt_2,

where Ly, (L) = —log(%ZSGYL max RS(v, s)).

VEYL

RS(v,s) =

Spatial variant reconstruction loss

To propagate the confidence of known pixels to
unknown ones,

— (g * l\_/[l) OM,
where M! =1 —-M + M}, 1 and MY, = 0.
Our confidence-driven loss Is:
= [|(Y-G(IX,M];0)) © M, ||

Adversarial 10ss
Laay = _EX~IPX [D(G(X; 6))]
+AgpEx-p [(|| Ag D(X) © My |2 — 1)°]

EXperiments
User studies
Paris street view  ImageNet Places2 CelebA  CelebA-HQ
GMCNN > CE 98.1% 88.3% - -
GMCNN > MSNPS 94.4% 86.5% - - -
GMCNN > CA 84.2% | 78.5% 69.6%  99.0% 93.8%

GMCNN: generative multi-column convolutional neural network; CE: context
encoder; MSNPS: multi-scale neural patch synthesis; CA: contextual attention.

Quantitative Evaluation
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