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What is Conditional Image generation?

Generative model

Generation

Input Class Label
panda
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The Applications of Conditional Image generation

Applications:
• Image creation and editing.
• Data augmentation.
• Others.



How to generate images from a class label
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How to generate images from a class label
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Long-range dependency in image generation
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• Standard convolutional neural network:
 Modelling image contents in a 

hierarchical manner.



Long-range dependency in image generation
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• Standard convolutional neural network: 
 Long-range dependency is conduct in a Markov chain.



Prior work: self-attention
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Query: every feature point

Key: All feature points

Self attention: reconstructing each feature point 
using the weighted sum of all feature points[1].

[1] Zhang, Han, et al. Self-attention generative adversarial networks. arXiv preprint arXiv:1805.08318, 2018.



Prior work: self-attention
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Self attention: reconstructing each feature point using the weighted sum 
of all feature points[1].

[1] Zhang, Han, et al. Self-attention generative adversarial networks. arXiv preprint arXiv:1805.08318, 2018.



Our method: Attentive Normalization
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Key observations

(-0.08, 4.77) (0.00, 0.35) (0.01, 0.44) (-0.01, 1.09)

• For a feature map, different locations may correspond to semantics with 
varying mean and variance. 

• Normalizing the whole feature map tends to deteriorate the learned 
semantics of the intermediate features spatially [2].

[2] Park, Taesung, et al. Semantic image synthesis with spatially-adaptive normalization. In CVPR, 2019.

Mean

Standard 
deviation



Our method: Attentive Normalization
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Core idea:

We normalize the input feature maps spatially according to the semantic 
layouts predicted from them.

Empirical observations to backup our method:

• A feature map can be viewed as a composition of multiple semantic entities[3,4].
• The deep layers in a neural network capture high-level semantics of the input 

images[5].

Semantic layout learningRegional normalization

[3] Greff, Klaus, Sjoerd Van Steenkiste, and Jürgen Schmidhuber. Neural expectation maximization. In NeurIPS, 2017.

[4] Sabour, Sara, Nicholas Frosst, and Geoffrey E. Hinton. Dynamic routing between capsules. In NeurIPS, 2017.

[5] Le, Quoc V. Building high-level features using large scale unsupervised learning. In ICASSP, 2013.



Our method: Attentive Normalization
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Semantic layout learning
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Semantic layout learning
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An image is composed of n semantic entities. 

Sky

Plane

Cloud

Each feature point of the image, it is determined by at least one entity.



Semantic layout learning
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How to group feature points of an image according to their 
correlation to the semantic entities.

Sky

Plane

Cloud

Background

Round thing

Square thing

Flat thing

Learned entities



Semantic layout learning
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How to get these semantic entities?

• A convolutional layer with n filters

Implementations

…

…
Background
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Semantic layout learning
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How to get these semantic entities?

To encourage semantic entities to approach diverse patterns

ℒ𝑜 = 𝜆𝑜||𝑾𝑾T − 𝑰||𝐹
2

where 𝑾 ∈ ℛ𝑛×𝑐 is a weight matrix constituted by these 𝑛 entities (each row is 
the spanned weight in the row-vector form). 

• A convolutional layer with n filters

Implementations

…
Background

Round thing

Square thing

Flat thing

Learned entities



Challenges in optimizing SSL
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Trivial solutions for learning entities directly

• It tends to group all feature points with a single semantic entity.
• No protocols are set to ban useless semantic entities.

Generated The highlighted regions indicated by the learned semantic layouts



Our method: Attentive Normalization
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Self-Sampling Regularization (SSR)
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Regularizing semantics learning with a self-sampling branch

𝑭𝑖,𝑗 = 𝑘(𝑿)𝑖
T𝑞(𝑿)𝑗

where 𝑭 ∈ ℛℎ×𝑤×𝑛, 𝑞(𝑿) are also translated feature maps. 𝑖 and 𝑗 denote 
pixel location. We set #{𝑖} = 𝑛 and #{𝑗} = ℎ × 𝑤.

Uniform 
sampling

𝑛

𝑭

𝑘(𝑿)

𝑞(𝑿)



Soft Semantic Layout Computation
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How to get semantic layout

𝑺raw = 𝑡𝑭 + 𝑓(𝑿)

where 𝑡 ∈ ℛ1×1×𝑛 is a learnable vector initialized as 0.1. 

𝑺𝑘 =
exp(𝜏𝑺𝑘

raw)

σ𝑖=1
𝑛 exp(𝜏𝑺𝑖

raw)

where 𝑖 and 𝑘 index the feature channels. Each 𝑺𝑘 is a soft 
mask, indicating the probability of every pixel belonging to 
class 𝑘. 𝜏 is the coefficient to control the smoothness of the 
predicted semantic layout with default value set to 0.1.



Regional Normalization
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Regional normalization based on the computed semantic layout

ഥ𝑿 =෍

𝑖=1

𝑛

(
𝑿 − 𝜇 𝑿𝑺𝑖

𝜎 𝑿𝑺𝑖 + 𝜖
× 𝛽𝑖 + 𝛼𝑖) ⊙ 𝑺𝑖

where 𝑿𝑺𝑖 = 𝑿⊙ 𝑺𝑖. 𝛽𝑖 and 𝛼𝑖 are learnable parameter 

vectors for the affine transformation, initialized to 1 and 
0, respectively. 𝜇 ⋅ and 𝜎(⋅) compute the mean and 
standard deviation from the instance, respectively.

𝐴𝑁 𝑿 = 𝜌ഥ𝑿 + 𝑿

where 𝜌 is a learnable scalar initialized as 0. 



Analysis: learned semantic layouts
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The predicted semantic layout indicates regions with high inner coherence in semantics.

(-0.01, 4.55) (0.03, 0.68) (0.03, 0.80) (-0.03, 1.07)

Mean

Standard 
deviation

Generated The highlighted regions indicated by the learned semantic layouts



Analysis: complexity analysis

24

The computational complexity of Attentive Normalization: Ο(𝑛𝑁𝐻𝑊𝐶)
The computational complexity of Self-Attention: Ο(𝑁(𝐻2𝑊2𝐶 + 𝐻𝑊𝐶2))

Module (ms) 128 x 128 256 x 256 512 x 512 1024 x 1024

AN (n=16) 0.73 2.24 9.46 37.68

Self-attention[1] 5.21 79.42 - -

All fed tensors are with the same batch size 1 and channel number 32. Resolutions are different. 
‘-’ stands for evaluation time unmeasurable due to out-of-memory in GPU. 
Running environment: Pytorch 1.1.0, 4 CPUs, 1 TiTAN 2080 GPU, 32GB Memory.

Complexity Analysis

[1] Zhang, Han, et al. Self-attention generative adversarial networks. arXiv preprint arXiv:1805.08318, 2018.



Applications: how to use Attentive Normalization
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How to use Attentive Normalization

In the testing phase, we remove the randomness in the self-sampling branch of 
AN by switching off this branch with 𝑡 = 0. 



Applications: class-conditional image generation

26

Task: it learns to synthesize image distributions by training on the given 
images. It maps a randomly sampled noise to 𝑧 an image 𝑥 via a generator 𝐺, 
conditioning on the image label 𝑦.

Network architectures

Generator: 𝑧 → FC (4 × 4 × 1024) → ResBlock up 1024 → ResBlock up 512 → ResBlock up 256 (AN) 

→ ResBlock up 128 → ResBlock up 64 → BN → ReLU → Conv3 × 3 → Tanh

Discriminator: 𝑥 → ResBlock down 64 → ResBlock down 128 (AN) → ResBlock down 256 →
concat(Embed(y), h) → ResBlock down 512 → ResBlock down 1024 → ReLU → Global sum pooling →
FC → 1



Applications: class-conditional image generation
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For the optimization objective, we use hinge adversarial loss.

For generator
ℒ𝐺 = −E𝑧~𝑃𝑧,𝑦~𝑃data𝐷(𝐺 𝑧, 𝑦 , 𝑦)

For discriminator,
ℒ𝐷
= −E 𝑥,𝑦 ~𝑃data min 1 − 𝐷 𝑥, 𝑦 + E𝑧~𝑃𝑧,𝑦~𝑃data min 1 + 𝐷 𝐺(𝑧, 𝑦), 𝑦



Applications: generative image inpainting
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Task: it takes an incomplete image 𝐶 and a mask 𝑀 (with missing pixels value 1 
and known ones 0) as input and predicts a visually plausible result based on 
image context. The generated content should be coherent with the given 
context.

Network architectures



Applications: generative image inpainting
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For the optimization objective,

For generator, it uses a reconstruction term and an adversarial term as

ℒ𝐺 = 𝜆rec||𝐺(𝐶,𝑀) − 𝑌||1 − 𝜆advE መ𝐶~𝑃෡𝐶
[𝐷 መ𝐶 ]

where 𝑌 is the corresponding ground truth of 𝐶, መ𝐶 = 𝐺 𝐶,𝑀 ⊙𝑀 + 𝑌⊙
(1 −𝑀).

For discriminator,

ℒ𝐷 = −E𝑌~𝑃data 𝐷 𝑌 + E መ𝐶~𝑃෡𝐶
𝐷 መ𝐶 + 𝜆gapE ሚ𝐶~𝑃෩𝐶

[(||𝛻 ሚ𝐶𝐷( ሚ𝐶)||2 − 1)2]

where ሚ𝐶 = 𝑡 መ𝐶 + 1 − 𝑡 𝑌, 𝑡 ∈ [0,1], and 𝜆gap = 10.



Experimental results
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Two tasks
• Class-conditional image generation.

 ImageNet (with 128 x 128 resolution).
• Generative image inpainting.

 Paris Streetview (with 256 x 256 resolution).

Both tasks rely heavily on distant visual relationship modelling for 
generating convincing semantic structures for objects and complex 
scenes.



Quantitative Results

Itr x 1K↓ FID↓ Intra FID↓ IS↑

AC-GAN[6] / / 260.0 28.5

SN-GAN[7] 1000 27.62 92.4 36.80

SN-GAN*[1] 1000 22.96 / 42.87

SA-GAN[1] 1000 18.65 83.7 52.52

Ours 880 17.84 83.4 46.57

Class-conditional image generation On ImageNet (128x128):
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[1] Zhang, Han, et al. Self-attention generative adversarial networks. arXiv preprint arXiv:1805.08318, 2018.

[6] Odena, Augustus, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxiliary classifier gans. In ICML, 2017.

[7] Miyato, Takeru, and Masanori Koyama. cGANs with projection discriminator. arXiv preprint arXiv:1802.05637. 2018.



Quantitative Results

Class Name (label) SN-GAN SA-GAN Ours

Stone wall (825) 49.3 57.5 34.16

Geyser (974) 19.5 21.6 13.97

Valley (979) 26.0 39.7 22.90

Coral fungus (991) 37.2 38.0 24.02

Indigo hunting (14) 66.8 53.0 42.54

Redshank (141) 60.1 48.9 39.06

Saint Bernard (247) 55.3 35.7 39.36

Tiger cat (282) 90.2 88.1 66.65

On ImageNet: Intra-FID comparison on type image classes
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Natural 
scenes or 
textures

Objects with 
complex 
structural 
relationship



Quantitative Results

Method PSNR (dB)↑ SSIM↑ MAE↓

CA 23.78 0.8406 0.0338

Ours 25.09 0.8541 0.0334

On Paris streetview test:
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Qualitative Results
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Agaric (992)Drilling platform (540)

Image inpaintingClass-conditional image generation

Categorical interpolation

Blenheim spaniel<->indigo hunting<->schooner coffee<->owl Panda<->Drilling platform Flower<->bird

Schooner (780)



Ablation studies

35

Module IS↑ FID↓

Attentive Normalization w BN 43.92 19.59

Attentive Normalization w/o orthogonal reg 45.99 18.07

Attentive Normalization w/o SSR 37.86 23.58

Attentive Normalization (n=8) 45.51 19.01

Attentive Normalization (n=16) 46.57 17.84

Attentive Normalization (n=32) 47.14 17.75

Quantitative results of AN module ablation on ImageNet with class-
conditional generation



Conclusion
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• We propose a novel method to conduct distant relationship modeling in 
conditional image generation through normalization.

• It may be beneficial to other tasks in future work.

Limitation
• It is possible that some features are not normalized when they are not 

similar to the given entities.
• Though these learned entities are correlated with the high-level 

understanding, it is still hard to interpret their exact meaning.
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