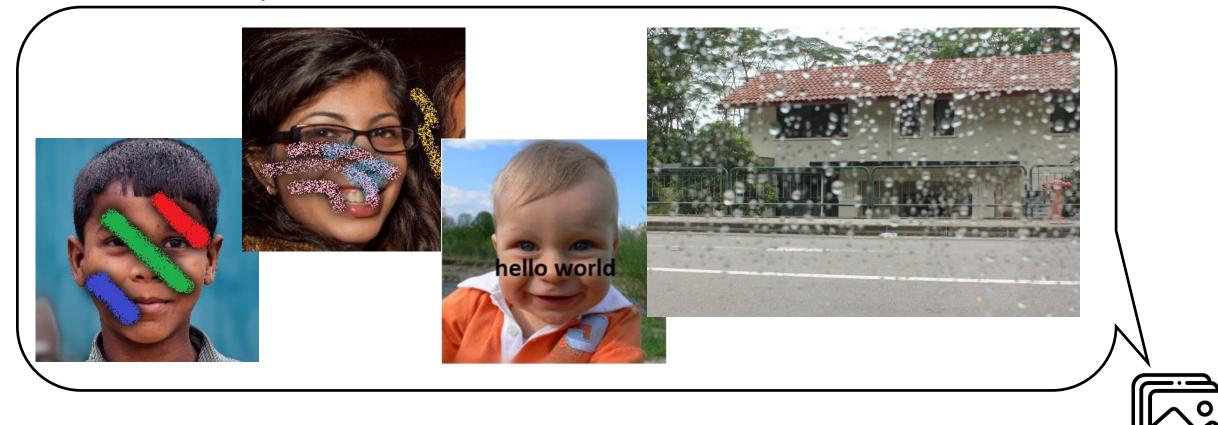
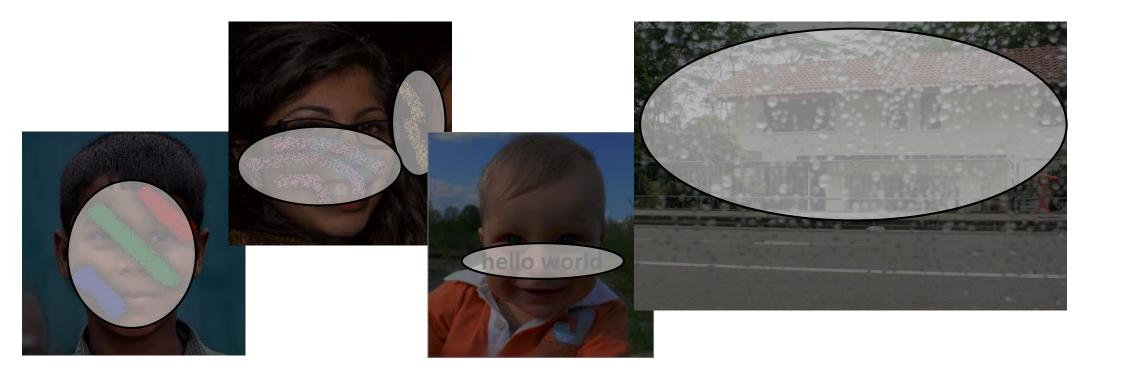


VCNet: A Robust Approach to Blind Image Inpainting

Yi Wang¹, Ying-Cong Chen², Xin Tao³, and Jiaya Jia^{1,4}

¹The Chinese University of Hong Kong ²MIT CSAIL ³Kuaishou Technology ⁴SmartMore



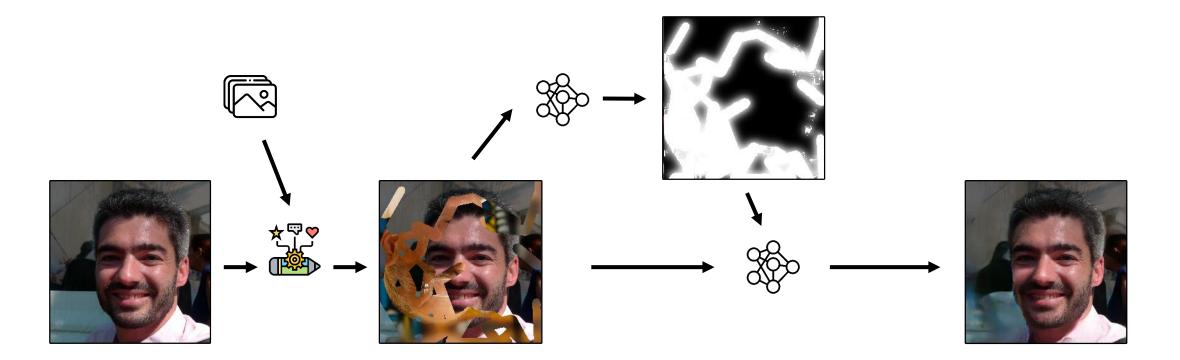


• How to repair these cases *automatically*?

What we propose in this paper

Blind inpainting method

• Robust against unseen degradation patterns & mask errors.



• Data synthesis

$$\mathbf{I} = \mathbf{O} \odot (\mathbf{1} - \mathbf{M}) + \mathbf{N} \odot \mathbf{M}$$

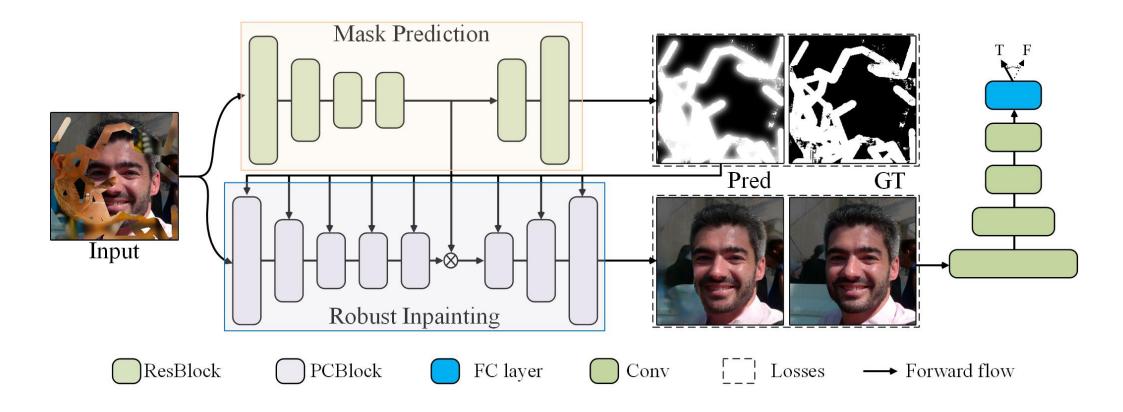
Where $\mathbf{I} \in \mathbb{R}^{h \times w \times c}$ is a degraded image (contaminated by unknown visual signals), $\mathbf{O} \in \mathbb{R}^{h \times w \times c}$ is the corresponding ground truth of \mathbf{I} . $\mathbf{M} \in \mathbb{R}^{h \times w \times 1}$ is a binary region mask (0 for known pixels and 1 otherwise) and $\mathbf{N} \in \mathbb{R}^{h \times w \times c}$ is a noisy visual signal.

- About the possible image contamination,
 - $N \rightarrow$ what,
 - $\mathbf{M} \rightarrow \text{where.}$

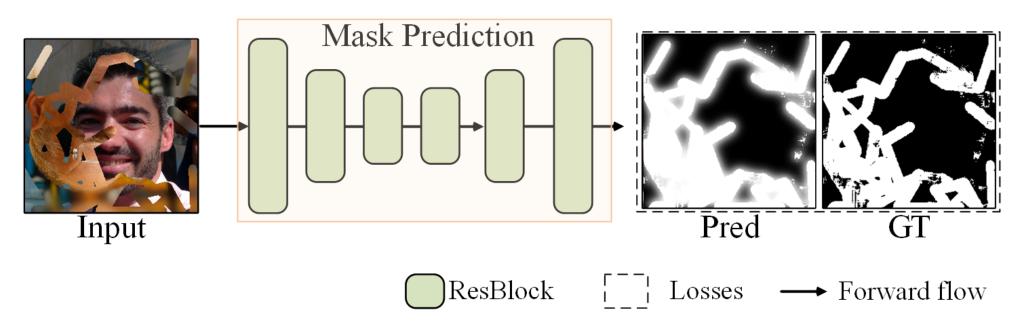
- About the possible image contamination,
 - $N \rightarrow$ what,
 - $\mathbf{M} \rightarrow \text{where.}$
- Intuition: make N is indistinguishable as much as possible from I on image pattern.
 - Discriminative models cannot decide if a local region is corrupted without seeing its context.
 - A neural system trained with such data has the potential to work on unknown contamination.

- Using real-world image patches to form N and free-form stokes as M
 - M is dilated a bit by the iterative Gaussian smoothing
 - Employing alpha blending in the contact region between ${\bf N}$ and ${\bf O}$
- Training tuples $< I_i, O_i, M_i, N_i >_{|i=1,...,m}$

• Framework: mask prediction + image inpainting



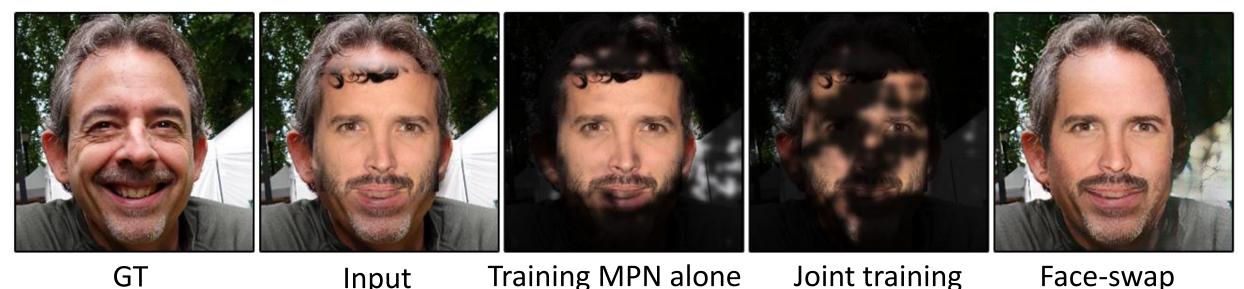
- Mask prediction
 - To predict potential visually inconsistent area of a given image
 - Formulate it as a binary pixel-level classification.
 - A self-adaptive loss to balance positive- and negative-sample classification



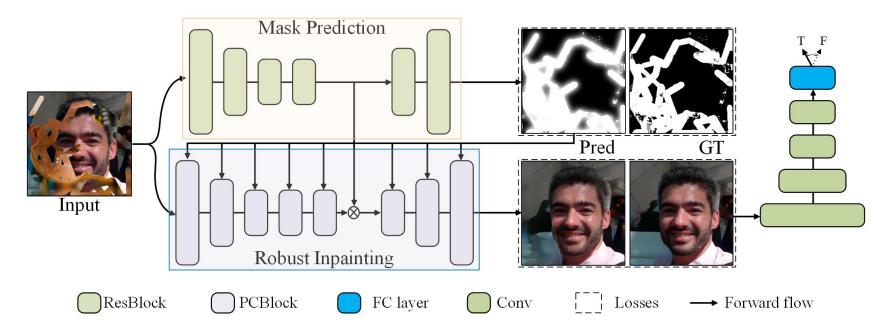
- Mask prediction
 - The optimization target of MPN is to detect all corrupted regions.
 - We propose to detect the inconsistency region of the image.

Input

• If these regions are detected correctly, other corrupted regions can be naturally blended to the image

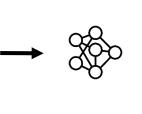


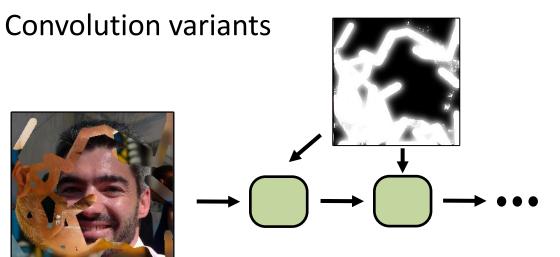
- Image inpainting
 - To inpaint inconsistent parts based on the predicted mask and context
 - Repairing corrupted regions requires knowledge from contextual information



• How to exploit the predicted mask

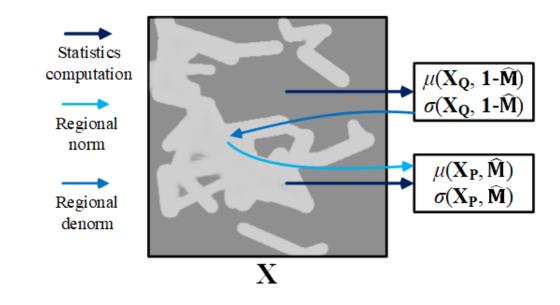
Naïve concatenation





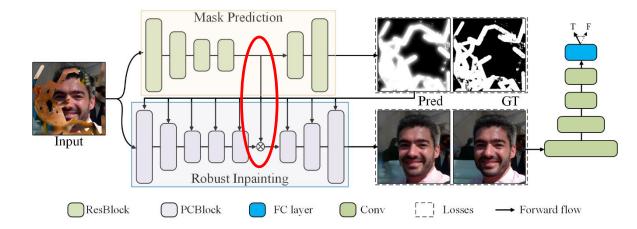
Mask guided conv (e.g., partial conv, gated conv)

- How to exploit the predicted mask
 - Probabilistic context normalization (PCN): transferring contextual information in different layers
 - PCN = context feature transfer + feature preserving



 $PCN(\mathbf{X}, \mathbf{H}) = [\beta \tau(\mathbf{X}, \mathbf{H}) \odot \mathbf{H} + (1 - \beta) \mathbf{X} \odot \mathbf{H}] + \mathbf{X} \odot \overline{\mathbf{H}}$

- Other designs in image inpainting
 - Feature fusion
 - Exploit discriminative features in inpainting



• A comprehensive optimization target

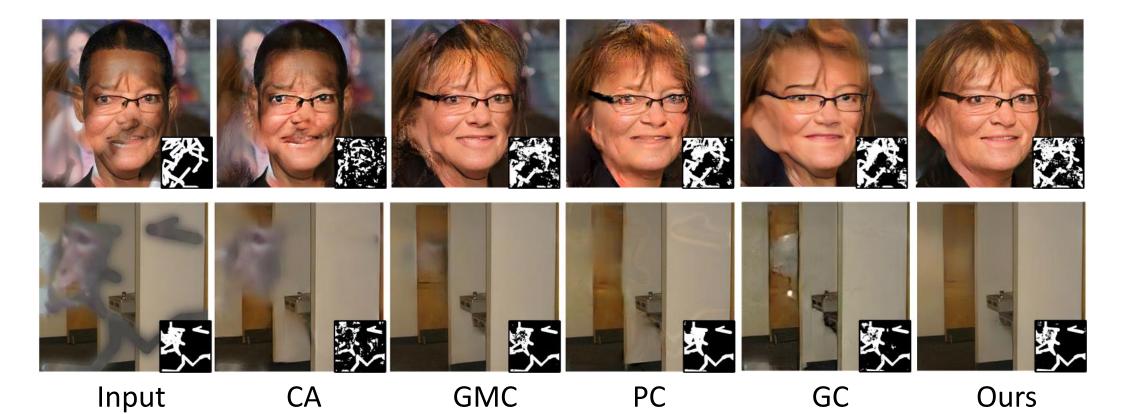
$$\mathcal{L}_{g}(\hat{\mathbf{O}},\mathbf{O}) = \underbrace{\lambda_{r} || \hat{\mathbf{O}} - \mathbf{O} ||_{1}}_{\text{reconstruction term}} + \underbrace{\lambda_{s} || V_{\hat{\mathbf{O}}}^{l} - V_{\mathbf{O}}^{l} ||_{1}}_{\text{semantic consistency term}} + \underbrace{\lambda_{f} \mathcal{L}_{mrf}(\hat{\mathbf{O}},\mathbf{O})}_{\text{texture consistency term}} + \underbrace{\lambda_{a} \mathcal{L}_{adv}(\hat{\mathbf{O}},\mathbf{O})}_{\text{adversarial term}}$$

• Quantitative evaluation

Table 1: Quantitative results on the testing sets from different methods

Method	FFHQ-2K			Places2-4K			ImageNet-4K		
	BCE↓	PSNR↑	SSIM↑	BCE↓	PSNR↑	SSIM↑	BCE↓	PSNR↑	SSIM↑
CA [43]	1.297	16.56	0.5509	0.574	18.12	0.6018	0.450	17.68	0.5285
GMC [37]	0.766	20.06	0.6675	0.312	20.38	0.6956	0.312	19.56	0.6467
PC [22]	0.400	20.19	0.6795	0.273	19.73	0.6682	0.229	19.53	0.6277
GC [44]	0.660	17.16	0.5915	0.504	18.42	0.6423	0.410	18.35	0.6416
Our VCN	0.400	20.94	0.6999	0.253	20.54	0.6988	0.226	19.58	0.6339

• Qualitative evaluation: synthetic ones



• Qualitative evaluation: dealing with other shaped masks

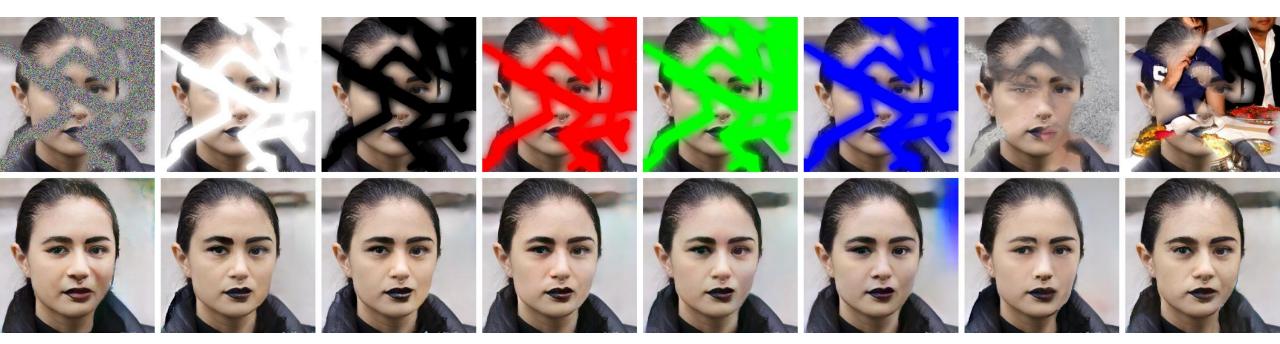
Input

Prediction

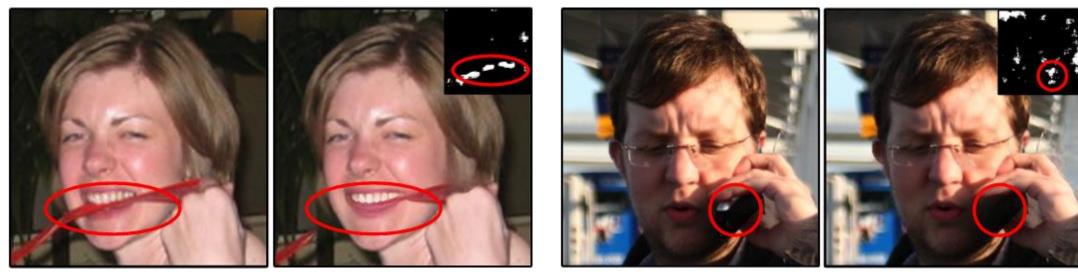
Input

Prediction

• Qualitative evaluation: dealing with different types of noisy patterns



• Qualitative evaluation: dealing with real occluded faces



Input

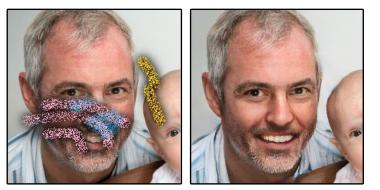
Prediction

Input

Applications: graffiti removal

Input

Prediction



Input

Prediction

Input

Prediction

Applications: raindrop removal

Prediction

Input

Applications: face-swap

Face-swap results

Input

Thanks for watching!

Project website: https://github.com/shepnerd/blindinpainting vcnet